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Abstract—This thesis makes an effort approach a method of 
deriving the reduced dynamic model of the seven machine 29 bus 
systems.  It consists of identification of coherent generators, 
aggregation of coherent generators and network reduction. 
Coherent generators are identified by means of time domain 
simulation.  In interconnected power systems, dynamic model 
reduction can be applied to generators outside the area of 
interest to reduce the computational cost associated with 
transient stability studies. The method consists of three step 
,namely dynamic-feature extraction, attribution, and 
reconstruction (DEAR). In this method, a feature extraction 
technique, such as singular value decomposition (SVD), is 
applied to the measured generator dynamics after a disturbance. 
Characteristic generators are then identified in the feature 
attribution step for matching the extracted dynamic features 
with the highest similarity, forming a suboptimal “basis” of 
system dynamics. In the reconstruction step, generator state 
variables such as rotor angles and voltage magnitudes are 
approximated with a linear combination of the characteristic 
generators, resulting in a quasi-nonlinear reduced model of the 
original system. 

 
  Keywords - Dynamic response, feature extraction, dynamic  
modelreduction, orthogonal decomposition, power systems. 
 
 

I. INTRODUCTION 
In interconnected power systems, dynamic model reduction 
(DMR) for generators outside the area of interest has been 
investigated to reduce the expensive computational cost of 
transient stability studies [1] – [5]. DMR generally consists of 
identifying and aggregating generators to be reduced, 
followed by reconfiguring the network model. 
Dynamic model reduction (DMR) generally consists of 
identifying and aggregating generatorsto be reduced, followed 
by reconfiguring the networkmodel [16]. 
The process for dynamic reduction of a power systems are 
divided into three steps:  

1. Identification of coherent generator groups.  
2. Aggregation of generators in the group.  
3. Reduction of the network. 

In this paper we proposed new DMR (dynamic model 
reduction method) is used. Predictable studies about dynamic 
reduction are mainly focused on getting equivalent model of 
given coherent groups of generators. DMR performed on the 
model of the external area to reduce the computational load. A 
large number of control and safety schemes responding a 
disturbance can be tested in the study area with a reduced 
external area model, thus improving the efficiency of both 
planning and operation of the transmission network. The goal 
of DMR is to reduce the number of variables and equations 
used to represent the external area as much as possible, while 
keeping the responses of internal generators and other relevant 
devices unchanged to the degree possible. This proposed 
method consists of three steps: 
 1. Dynamic-feature extraction, 
2 Feature attribution, and 
3. Feature reconstruction 
 
In interconnected power systems, dynamic model reduction 
(DMR) for generators outside the area is used to reduce the 
expensive computational cost of transient stability studies. 
Dynamic model reduction (DMR) holds guarantee to 
represent the real system with proper degrees of rough 
calculation while maintaining relevant dynamic properties, 
which enables faster simulations of system responses to 
disturbances. Successful implementation of DMR is complex 
for online dynamic security assessments, in which many 
scenarios need to be considered as part of possibility analysis. 
In dynamic model reduction coherency is the most common 
method which is used for the identification step. 
 
A. COHERENCY METHOD 

Advantage of coherency – obtaining the physical structure of 
the system compare to other method. This technique is known 
as “model equivalencing”. This technique mainly classifies 
the coherency. 
Coherency based reduction techniques classified in to three 
types:- 
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1. Type I - Relies on evaluate linearized models of the 
system around the operating point. When grid 
configuration changes lines are tripped after a large 
disturbances. Recognition result can be obtained for 
the pre fault system not valid for the post fault 
system. 

2. Type II- After the calculation of the result of offline 
dynamic simulation, we find the coherency groups. 
These methods are very useful and used in a higher 
reduction ratio, but the result of reduced model is 
very limited applicability in real time because both 
the system configuration and function point are 
different from the offline studies. 

3. Type III – This method basically depend on the 
online measurement and computation, advanced 
hardware, with phasor measurement units, broadband 
communications, and fast computers, and with the 
probable to address issues linked with the other 
approaches. 

R. Podmore [2] discussed the development and estimation of a 
method for identifying the coherency behavior of generator 
for various system disturbances. This information is used for 
forming dynamic equivalents which can be applied in 
transient stability.  S. E. M. d. Oliveira and A. G. Massaud [3] 
discussed about the modal dynamic equivalent for electric 
power system in which is basically based on stability 
simulation test. While, S. E. M. d. Oliveira and J. F. d. 
Queiroz[4] discussed about only the theory of modal dynamic 
equivalent for electric power System. 
Type III methods and the dynamic model reduction method 
(DMR) method is based on the dynamic phasor measurement 
data of generator. 
The projected method is collected of the three steps:- 

1. DYNAMIC- FEATURE EXRACTION 
2. FEATURE ATTRIBUTION 
3. FEATURE RECONSTRUCTION 

Combination of all three methods is called DEAR. 
1. Dynamic feature extraction: - Dynamic feature 

includes speed, frequency etc. In this method, a 
feature extraction technique, such as singular value 
decomposition (SVD), is applied to the measure 
generator dynamics after a disturbance. 

2. Feature attribution:-Characteristic generators that 
have responses matching the extracted features (e.g., 
the orthogonal components from SVD) with the 
highest similarity are then identified. 

3. Feature reconstruction:- In the reconstruction step, 
generator state variables such as rotor angles and 
voltage magnitudes are approximated with a linear 
combination of the feature generators, resulting in a 
quasi-nonlinear compact model of the original 
system. 

 

 
 
 
 

II. PROCEDURE FOR THE DMR OF GENERATORS 
IN LARGER SYSTEMS 

Step 1) Dynamic-feature extraction—Analyze the dynamic 
response vectors of the original system for a disturbance, and 
find the optimal orthogonal bases of these responses. 
Step 2) Feature attribution—Identify generators with 
responses that are highly similar to the optimal orthogonal 
bases and designate those units as the characteristic 
generators. 
Step 3) Feature reconstruction—Use linear combinations of 
the characteristic generators to approximate non characteristic 
generators. 
 

III DYNAMIC FEATURE EXTRACTION: FINDING 
THE OPTIMAL ORTHOGONAL BASIS 

In this section , we discuss about the concept and 
identification of optimal orthogonal basis system’s dynamic 
responses. For our convenience we assume the classical 
generator model and rotor angle ‘δ’ are the state variables. Let 
the magnitude of the generator internal voltage, E’, is  to be 
constant.  
Let δ1,δ2,………δi,…..δmare the m rotor angles of the 
system to be reduced. 
δi = n- dimensional row vector representing the dynamic of 
rotor angle. 
Its elements are time series: δi(t1), δi(t2),…….,δi(tn). 
Where, δ= [𝛿1; 𝛿2; … … ;𝛿𝑚] 
            δ = m*n matrix 
Let x = [x1; x2;……. ;xi;……..;xp] = set of optimal 
orthogonal basis. 
p < m 
xi= n-dimensional row vector. 
Meaning of “optimal” is showing by this relation: 
   p < m 
�̂�= Kx 
Where, K =m*p matrix 
and the equation is minimized, 
�𝛿 − �̂��2 =  ∑ �𝛿𝑖 − �̂�𝑖�

𝑇𝑚
𝑖=1 (𝛿𝑖 − �̂�𝑖)                                                                                   

(1) 
x  = Optimal orthogonal bases. 
�̂� =Approximation using optimal orthogonal bases. 
T = Coefficient matrix between x and �̂� 
m = Dimensionality of original space. 
p = Dimensionality of reduced space. 
K = First r columns of   T. 
In this paper we used SVD method i.e. singular value 
decomposition method, according to this method and SVD 
algorithm we solve the above equation and we find: 
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𝛿 = 𝑈𝐷𝑊𝑇( 2) 
Where,  
U= m*m unitary matrix 
D= m*n rectangular matrix = Damping ratio of synchronous 
machine 
𝑊𝑇= n*n unitary matrix 
 
𝑥 =  𝑊𝑇 (1:𝑝, ∶)                                                                                                                     
(3)                  
𝐾 = 𝑇(: , 1 ∶ 𝑝)                                                                                                                       
(4) 
Where, T = UD 
K = the first r column of T 
 

IV FEATURE ATTRIBUTION: FIND OUT 
CHARACTERISTIC GENERATORS 

The ‘p’ optimal orthogonal basis vectors found in the feature 
extraction step which will give result in negligible errors when 
used to approximate δ. If each of these basis vectors exactly 
matches the dynamic angle response of one of the generators, 
then the angle dynamics of the other generators must have 
very negligible energy impact because of their singular values 
are small. It means that we have to keep ‘p’ generators in the 
model while ignore the other generators. 
The set of characteristics generators as suboptimal bases are 
representing the entire system. 
To determine the characteristics, we have to find 

𝛿 = [𝛿1;𝛿2; … … … . ; 𝛿𝑚] 
In other words we have to find, 

𝜀 = [𝛿𝑟;𝛿𝑠; … … … ; 𝛿𝑧] 
 
Therefore, ′𝜀′ is highly similar to ‘x’. 
According to the last subsection 𝛿𝑠 can be approximated by 
linear combination of the optimal orthogonal bases. 
𝛿𝑟 ≈  𝐾𝑟1𝑥1 + 𝐾𝑟2𝑥2+. … … . . +𝐾𝑟𝑖𝑥𝑖+. … . . +𝐾𝑟𝑟𝑥𝑟                                                                 
(5)     
 
𝛿𝑠 ≈  𝐾𝑠1𝑥1 +𝐾𝑠2𝑥2+. … … . . +𝐾𝑠𝑖𝑥𝑖+. … . . +𝐾𝑠𝑟𝑥𝑟                                                 
(6) 
 
Where, x = optimal orthogonal basis and ‘δ’ is normalized by 
the given paper K.K.Anaparhi&K.F.Thornhill [8] which gives 
the coherency identification in power system through 
principal component analysis. 
If  |𝐾𝑠𝑖 | is larger and indicates a higher degree of co-linearity 
between two vectors (𝛿𝑠 𝑎𝑛𝑑 𝑥𝑖) 
For example | 𝐾𝑟𝑖 | > | 𝐾𝑠𝑖 | , it means there is similarity between 
𝑥𝑖 and 𝛿𝑠  is higher than that between 𝑥𝑖 and 𝛿𝑟 . 
𝛿𝑠 have highest similarity to x, if there is inequality therefore 
the below equation gives the highest similarity and can 
identified for each orthogonal basis. 

 
�𝐾𝑠𝑖� > �𝐾𝑟𝑖�,𝑓𝑜𝑟 ∀ 𝑝 ∈ { 1,2, … … ,𝑚} 𝑟 ≠ 𝑠                                                                             
(7) 
From above equation ′𝜀′ is determined. 
 

V .FEATURE RECONSTRUCTION: MODEL 
REDUCTION USING THE LINEAR COMBINATION 

OF CHARACTERISTIC GENERATORS 
 

𝛿 = 𝑈𝐷𝑊𝑇 
 

𝛿𝑟 ≈  𝐾𝑟1𝑥1 +𝐾𝑟2𝑥2+. … … . . +𝐾𝑟𝑖𝑥𝑖+. … . . +𝐾𝑟𝑟𝑥𝑟 
 

δs ≈  Ks1x1 + Ks2x2+. … … . . +Ksixi+. … . . +Ksrxr 
According to these equation ‘δ’ can be arranged as: 

δ = �εε�� ≈ �Kε
Kε�
�  x                                                                                                                    

(8) 
Where, 
 δ = m*n matrix 
ε
= p
∗ n matrix represnting rotor angle dynamics of characteristics gener  

ε�
= (m − p)
∗ n matrix represnting rotor angle dynamics of non
− characteristics generators 

x = p*n matrix 
𝐾𝜀 = 𝑝 ∗ 𝑝 𝑠𝑞𝑢𝑎𝑟𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 
𝐾𝜀�  = (m-p)*P matrix 
𝐾𝜀is invertible and linear relation between 𝜀 and 𝜀 ̅is 
𝜀 � = 𝐶𝜀                                                                                                                                          
(9) 
C = (m – p)*p matrix and can be calculated by the least square 
method 
 
𝐶 =  𝜀 �[(𝜀 𝜀𝑇)−1𝜀]𝑇                                                                                                                     
(10) 
 
From equation (8) we can get: 
𝜀 ≈ 𝐾𝜀𝑥                                                                                                                                           
(11) 
 
And 𝜀 � ≈  𝐾𝜀 �𝑥                                                                                                                             
(12)      

Multiplying both sides 𝐾𝜀−1 in equation (11) then we 
get, 
𝑥 ≈  𝐾𝜀−1  𝜀                                                                                                                    
(13) 
Putting the value of x from equation (13) in equation 
(12) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 10, October-2015                                                                                                 115 
ISSN 2229-5518  

IJSER © 2015 
http://www.ijser.org 

Therefore equation is:  𝜀̅  ≈  𝐾𝜀�𝐾𝜀−1𝜀                                                                           
(14) 

Equation (9) and (14) developed the linear equation between 
the rotor angle dynamics of characteristics generators and 
non- characteristics generators. 
 In truth, with the generator excitation system, also will react 
dynamically to the disturbance. The dynamics of can be 
treated in the same way as rotor angle in the DEAR method to 
improve the reduced model, except that the set of 
characteristic generators needs to be determined from . This 
way, both and of non-characteristic generators will be 
represented in the reduced model using those of the 
characteristic generators. 
Pyo et al. [23] present a coherency aggregation method that 
can handle higher-order models with excitation systems, and 
apply the method using the IEEE 29-bus system. Here the 
DEAR method is applied on the same system to compare the 
Performance. 
 

VI. CASE STUDIES: 

A. Dynamic feature extraction: 

Seven machine system in which has the angle 
dynamics𝛿1,𝛿2, … … … … . 𝛿7 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛿1
𝛿2
𝛿3
𝛿4
𝛿5
𝛿6
𝛿7⎦
⎥
⎥
⎥
⎥
⎥
⎤

        = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇11 … … … … … … …
𝑇21 … … … … … … …
𝑇31 … … … … … … …
𝑇41 … … … … … … …
𝑇51 … … … … … … … .
𝑇61 … … … … … … … .
𝑇71 … … … … … … … .

𝑇17
𝑇27
𝑇37
𝑇47
𝑇57
𝑇67
𝑇77⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
W1
W2
W3
W4
W5
W6
W7⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

B. Feature reconstruction: 

𝐾𝜀�=

⎣
⎢
⎢
⎢
⎢
⎡
−530.4841
−493.8687
−526.9796
−512.7631
−520.9784
−530.4841⎦

⎥
⎥
⎥
⎥
⎤

 

𝜀̅  ≈  𝐾𝜀�𝐾𝜀−1𝜀 

⎣
⎢
⎢
⎢
⎢
⎡
𝛿2
𝛿3
𝛿4
𝛿5
𝛿6
𝛿7⎦
⎥
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎢
⎡
−530.4841
−493.8687
−526.9796
−512.7631
−520.9784
−530.4841⎦

⎥
⎥
⎥
⎥
⎤

𝛿1 

 

 

C. Graph of different rotor angles: 

Variation of different graphs of  𝛿1,𝛿2, … … … … . 𝛿7. 

Blue line shows old delta and red line shows new 

delta. 
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      fig.1. Rotor angle dynamics in a seven machine system 

\ 

 

D. Error function for machine 1 

ja(i)= 1
(t2−t1)∫ �δi

a(t)−δi
f(t)�dtt2

t1
 

Js(i) = �
1

(t2− t1)
��δia(t) − δif(t)�

2
dt

t2

t1

 

Here we define an absolute magnitude and a square root of the 
sum of squares error function of ‘i’ in a time period t1 and t2. 
Whereδia; and δif are the rotor angle of machine iin the 
aggregate model and the original model, respectively. Using 
the error functions, we can investigate the optimal aggregation 
for each area. 

 
Table- 1.1 

δ Ja Js 

δ1 0.7154 1.8157 

δ2 0.6659 1.3377 

δ3 0.7883 1.6055 

δ4 0.6261 1.9137 

δ5 2.0787 3.6336 

δ6 
0.8446 1.9963 

δ7 
0.3327 1.0261 

E. Reduction ratio: 

𝑹 = (𝑵𝑭 − 𝑵𝑹)/(𝑵𝑭) 

Where 𝑁𝑅= total number of state variables of the reduced 
model of the external system. 

 And,𝑁𝐹 = total number of variables of the original model. 

VII. CONCLUSIONS: 

A measurement-based dynamic model reduction method that 
simplifies the external systems through dynamic-feature 
extraction, attribution, and reconstruction is projected. The 
new method is named DEAR method. The network model is 
unchanged in the DEAR method, which makes online 
applications relatively easier, simple and more flexible (e.g., 
generators of interest can be retained in the reduced model). 
DEAR method give ways better reduction ratio and small 
number of errors than the coherency based aggregation 
method. It also shows that DEAR method works easily under 
stable and unstable conditions. Online application of DEAR 
method is demonstrate using a super set of characteristics 
generators and refinement of the coefficient matrix. 
The performances of the software package developed have 
been described through a seven machine 29 bus system. For 
this case, a fault is placed on one of the transmission lines. In 
this case studies, it is shown that a system can be easily 
assembled by combining any appropriate selection of 
component models of the machine, exciter, governor and 
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network. The simulation results show the responses of the 
main dynamic indicators of the system such as load angle and 
speed the actual. 
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